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ABSTRACT

Upper bounds on the left and right tails of the Poisson distribution are

given. These bounds can he easily computed in a numerically stable way, even

when the Poisson parameter is large. Such bounds can be applied to variate

generation schemes and to numerical algorithms for computing terminal rewards

of uniformizable continuous-time Markov chains.
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S GNIFICANCE AND EXPLANATION

Let p(k) = exp(-)A= 01 be the Poisson mass function.

In a variety of application contexts, it is necessary to compute infinite sums

involving these probabilities. For example, such sums occur naturally in

numerical algorithms developed for Poisson variate generation purposes and for .,,

computing terminal rewards of uniformizable continuous-time Markov chains.

From a practical standpoint, it is necessary to truncate these infinite sums

after a finite number of terms. Development of a priori error bounds on the

error incurred by this kind of truncation requires bounds on the left and W.

right tails of the Poisson distribution; such bounds are given here. These

bounds are easily computable in a numerically stable way, even when the

Poisson parameter A is large.
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UPPER BOUNDS ON POISSON TAIL PROBABILITIES '-k.%

Peter W. Glynn

1. INTRODUCTION

Let p(k) = exp(-X).Xk/k! (k - 0,1,...) be the Poisson mass function. Our goal in

this paper is to provide upper bounds on the left and right tail probabilities, which are

defined resoectively by the formulae

n
P(n] - ). p(k)

k-0

i(n) = p~k)
k-n

Such bounds have application in several numerical methods arising from the analysis of

stochastic systems.

APPLICATION 1: To generate variates from the clipped Poisson distribution, it is common to

compute a table of the Poisson distribution function (see Bratley, Fox, and Schrage (1983),

p. 170-171 and p. 334-335). The numerical computation of the table requires truncating the

Poisson tail, thereby introducing numerical error. In order to bound the numerical error,

it is necessary to have a priori bounds on the probability mass of the truncated tails (see

Fox and Glynn (1q86)).

APPLICATION 2: Let X - {X(t) : t ) 0} be a uniformizable continuous-time Markov chain

with generator Q. Given that f is a real-valued function defined on the state space

9 of X, one is often interested in numerically determining the terminal reward

r = Ef(X(T)). The parameter r can be computed as

-k
k -O k li -
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for a ;0 A- sup1 -Qxx x e S), where Y -(Y(k) kc 0 0) is an appropriately defined

discrete-time tKarkov chain living on S. Gross and Killer (1984) have suggested numerical

algorithms based on the representation (1.1). Of course, from a numerical standpoint, it

is necessary to truncate the infinite sum appearing in (1.1) at some finite quantity, say

* m. The absolute error introduced by truncating (1.1) at m is given by

-9 - t (C't) kc

k-m+1 kic

*Let f10= sup It(x)l tx C S By observing that jEf(Y(k))I 4 IfN for kc 0, it

follows that £(a,f) 4 10 - P(m+1); thus, for bounded functions, an explicit a priori

error bound can be calculated, provided that P~xs+1) can be bounded.

incidentally, by letting f(-) -K, one finds that

sup{c(ci,f) IfS 4 K) =K*P(m+1)

this suggests that one should choose a so as to minimize P(m+1). Recall that P(m+1)-

P{N(aT) > m), where N(,) is a unit intensity Poisson process. Since N(*) has non-

decreasing paths, P(m+1) must be non-decreasing in a. Hence, the best choice of Q for

*minimizing P(m+1) is Sa.

* APPLICATrIONS 3: The steady-state distribution of the M/M/,/- infinite-server queue with

*arrival rate X~ and service rate v is Poisson with parameter X/p An upper bound on

-P(n) yields an upper bound on the lonq-run probability that such a queueing system

contains n or more customers.

-~ In the above applications, an upper bound on the tails is used to determine n1(£ ),

*n 2(c) for which P(nj(C) N (A) 4 n2 (e)) > 1 C1~ where c is a prescribed error

tolerance. (In Application 2, one would generally take nl(c) - 0.) One can argue that a

straicqhtforward method exists for choosing such en (n1 (e),n 2 (£)) pair. Choose n1(c) =0

* and let n2(£) be the first m for which P(m) > 1 - 6; the letter operation can be done

numerically by successively addinq the mass probabilities p(k). This method has two

Aisadventages. Firstly, the computation of n2 (c) requires programming set-up time and

-2-



expense. Secondly, for large X., the computation of the mass probabilities p(k) -p

involves significant numerical underf low-overflow problems; overcoming these difficulties

is non-trivial (see Fox and Glynn (1986)).%

On the other hand, for larqe A, the central limit theorem applies to yield

(1.2)p{ 2 )
4( 2( 4() I

as X~ + where I(x) = , (t)dt and OW) (2w)1/ 2 exp(-x2/2). The problem in

applying (1.2) (together with a table of the normal distribution function) to obtain ni(e )

and n2 (E) is that (1.2) is only true in the limit. For finite X, (1.2) gives no usable

information. An obvious refinement would be to combine (1.2) with the Berry-Esseen theorem

(see p. 542 of Feller (1971)). This, however, leads nowhere since the Berry-Esseen error

bound is independent of £j and z2 and consequently gives no usable upper bound on the

Poisson tail probabilities.

Our error bounds avoid these difficulties. Our first result bounds the tail

orohabilities in terms of the mass function.

(1.3) PROPOSITION. Assume >.

i.) If 0 4n < X, then

P(n) < p(n) (1 - ))

ii.) If n > k1 and m 1, then

~ 1 n+M-1

n+1 n

The following corollary is immediate.

(1.4) COROLLARY. Wi lim P(n)/p(n)-1

(ii) lim P(n)/p(n) -1

According to the second part of our corollary, virtually all the mass of the Poisson

riqht tail P(n) sits at the point n. A further consequence of (1.3) 11.) (with ma-1

-3-*



is that for 0 > Or

(1.5) 1 ( ~+ i , a
p(L 14)

which implies that

lii . (I44a) =lie .p(JA (14a))

ct (14a)ln(14a)

(1.6) is a statement of Chernoff's large deviations theorem (see Bahadur ( 1971), p. 6-9)

* specialized to the Poisson distribution. Thus, (1.5) may be viewed as a refinement of

Chernoff's result.

The bounds given by (1.3) can be used directly when X~ is small, since p(Ic) can

* then he evaluated without numerical difficulties arising. If A~ is large, it is useful to

have error bounds on the mass function itself. Let a =~1 V.

* (1.7) PROPOS~ITION~. Let A', n )1. Then,

i.) p(a-n) 4 (2wa) '2exp(-n(n-1)/2X.)

ii.) p~a~) ( 2~a)1/2 * x(-n(n-1) + (n-t)n(2n-1))
2X 2

12X
The normal approximation (1.2) indicates that the choices n1 (E), n2 (E) will be of

order X2 from X~. Thus, the values of n appearing in (1.3), which are of most concern,

are those within order /2from X. Consequently, if A is large, the factors nA

* and A/(n+1) appearing in (1.3) i.) and ii.) respectively will be close to one, causing

* the bounds to blow up. Thus, more refined bounds are needed when X~ is large.

(1.8) THEOREM. Suppose ;0 2. Let *(x 0 (-x) be the standard normal right tail

probahility.

i.) If n )2,

P(a-n) 4 exp(1/BX)-(1 + _I - n-3/2)

ii.) if 2 4 n 4 (A+3)/2,

P(a+n) IC exp(1/9))(1 + 1-)-/2-(1 - +~ (oat~.n3,
a~n+1(2A

4.-4-



An obvious limitation of (1.3) i.) is the restriction on the size of n. However, -

since one expects to use these bounds only for large X (in which case n will tend to be

of order A /), this restriction is not serious. To avoid the computation of theV

numerically hard-to-compute reciprocal factor in (1.8) 11.), we also offer the following %

hound.

(1.9) PROPOSITION. Suppose A ) 2. For 2 C n 4 (X+3)/2, 9.-

P(a+n) 4 exp(t/16)- (1 * l )'2. ( -exp(- -)) ---.,(n 4 /2

Note that all the terms appearinq in the upper bounds of (1.8) i.) and (1.9) can be

easily computed in a numerically stable fashion. These bounds should therefore be suitable

for the apolications oreviously described.

S. . o
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2. PROOFS

PROOF OF PROPOSI'Trn 1.3: Observe that

P(n) p(n)-(1 + n(n-) (k+l))

k-0 xn

n-1 -

k n,-I

4 n~n k- -p(n)*(l

For P(n), it is evident thAt

SP(n) = j p(k) + A- p(k). ki

k-n k-n (l+m)l

n~m-1
4 p(k) + X' p(k).(n+1)

k-n k-n

n-lp(k) + C.) P(n)

k=n 1

Solvincl for P(n) yiplis (1.3) ii.).

Thefolowig lmmacollects a series of inequalities which we shall need for the

remainder of our proofs.

(2. 1) LFM*IA. i.) for Y > -1, Xn(l+y) 4 y

ii.) for y 0, -9fn(1+v) -6 -y + y2

tit.) for v 0, (i+')' /2 1 + y/2.

PPOOr'. Fir i.), Tet z(y) v y -2.(l+y) and observe that q(0) -0 and a-(y) < 0 for

-1 < y < 1), whereas 41(y) > 0 for y > 0. '4ence, 0 is a global minimizer of q(-),

- q0 -Ilat qey) ) 4~0)= for y > -I. The proofs of ii.) and iii.) are similar.

* PROOF OF PRO0POSIT'ION 1.7: For 1 < n 4 a, we use the fact that a 4 X to obtain

%. . . . . . . . .



P(a-n) = a)* b *

1.. (n-1)-

n-I

n (a)-exp( 7 In(-

By (2.1) 1..), mIn(- k/1) C -k/A so

n-I
p(awn) (p(a)*exp(- k/A)

k-0

- p(a),exp(-n(n-I)/2A)

by a standard summnation formula (see Knuth (1969), p. 55). To bound p(a), we use aWk

Stirling formula-tyoe inequality (see Feller (1968), p. 54)

> 2r)2a -a
al > 2f/a *e .exp(1/(12a+I))

which yields (b -A-a)

-Aa
p(a) -ae

/271a aa-ea

(2.2)1 -b a
/2wa a

the last inequality is obtained by exponentiating both sides of tn(l+b/a) 4 b/a (see

(2.1) i.)). This proves (1.7 i.) for n 4 a; for n > a, the inequality is trite. As

for p(a+n), use a > A-I to obtain

An
p~a~n P~a(a+1)(a+2)... (a+n)

n-
-p(a).ep-* ~

v(a)*exp(- +. 2
k-0 k= 2X2



the latter inequality by (2.1) 11.). Using standard summation formulae (see Knuth (1969),

p. 55) and (2.2) gives (1.7) 11.).

PROOF OF THEOREM4 1.8: By (1.7) i.),

a/ k(k-1)

Since g(x) -- x(x-1)/2X is non-increasing on (/,)

for x ;0 3/2. Thus, if n > 2,

(2.3)

By (2.1) 111.), (A/a)2 4 1 +b/2a. For A> 2,AC L~j + 1 4 A + 2 -2A - +

(2/AJ.(X-1) C A + (2/1LX.A so that b/2a 4 I/)1 substituiting into (2.3) yields (1.8)

For (1.8) ii.), we first use (1.3) 11.) with m -a to obtain

P~a~) ( 1 - a)1n+a-1

'ia~) a+n+1 )a p(a+k)

For n 4k 4n+a-1, we have 
-

k(k-1) (k-1)k(2k-1)
2A 21 2A

-k(k-1)

where I (n+s)/(3A) + (2A)) By (1.7) 11.), it follows that

(2.4) T(a+n) 4 (1 - -)a) * (2T a)' 7 exp (-k (k- 1)3/2)

As in the bound for PNa-n), the latter sum is dominated by

(2.5)
=x 1 B (W/2T(n1

64F
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Now, B 1 since n+a ;0 n ;0 21 furthermore, since a -9(1+3)/2, it follows that

B > I -(A/2 + 3/2 + A)/3 4 + (2A)-) 1/2. Hence , B1/2 < /2i, exp(MB/Gk) 4 exp (I/1A, and

y(n3) V(,n-3) 4
2 2r: (2A)

Combining these inequalities and the previously obtained (X//a)/2 4 (1 + 1A) with (2.4)

and (2.5), we get (1.8) ii.).

PROOF OF PROPOSITION 1.9: For A~ 2, exp(l/)L) < exp(1/l6 ), so it remains only to show

that

X ) )a)-l e 11 -2n )-1(2.6) (1 a+n+i a

*Since a+1 X , it follows that X/(a+n+1) I (n/(X+n)). Now,

1I~. exp(-n/()X+n))

(exponentiate both sides of (2.1) i.)), so

(2.7) a ) p-n
a+n+1 +-

The function f(x) -(x-1)/(x+1) is non-decreasing on [0,-) so f(x) f(2) -1/3 for

x > 2. Thus, for )~)2, P-)L+) 1/3, proving that a ;P (1/3)(X+1). Hence,

a(X+n) )a(X + A./2 + 3/2) > (X+)/(3-(L+1)*3/2) - 2/9. Relation (2.7) then yields

A )a < exp(-2n/9)
a+n+1

* from which (2.6) follows immediately.
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